Exercise 13

Find the derivative of the function.

$$
y=x^{2} e^{-3 x}
$$

Solution

Take the derivative using the product rule and the chain rule.

$$
\begin{aligned}
y^{\prime}=\frac{d y}{d x} & =\frac{d}{d x}\left(x^{2} e^{-3 x}\right) \\
& =\left[\frac{d}{d x}\left(x^{2}\right)\right] e^{-3 x}+x^{2}\left[\frac{d}{d x}\left(e^{-3 x}\right)\right] \\
& =(2 x) e^{-3 x}+x^{2}\left[e^{-3 x} \cdot \frac{d}{d x}(-3 x)\right] \\
& =2 x e^{-3 x}+x^{2}\left[e^{-3 x}(-3)\right] \\
& =2 x e^{-3 x}-3 x^{2} e^{-3 x} \\
& =x(2-3 x) e^{-3 x}
\end{aligned}
$$

